2020考研數(shù)學(xué)高數(shù)備考:元函數(shù)微分法及應(yīng)用

  • 來源: 學(xué)府考研
  • 瀏覽: 1099
  • 2019-09-27
我要分享:
摘要:2020考研預(yù)報(bào)名今日截止,國慶過后,進(jìn)入正式報(bào)名階段,考研已進(jìn)入倒計(jì)時(shí),在最后80多天的時(shí)間里,做好沖刺復(fù)習(xí)備考,數(shù)學(xué)想要獲取高分,必要的公式定理一定要熟記。

  元函數(shù)微分法及其應(yīng)用

  1、多元函數(shù)極限存在的條件極限存在是指P(x,y)以任何方式趨于P0(x0,y0)時(shí),函數(shù)都無限接近于A,如果P(x,y)以某一特殊方式,例如沿著一條定直線或定曲線趨于P0(x0,y0)時(shí),即使函數(shù)無限接近某一確定值,我們還不能由此斷定函數(shù)極限存在。反過來,如果當(dāng)P(x,y)以不同方式趨于P0(x0,y0)時(shí),函數(shù)趨于不同的值,那么就可以斷定這函數(shù)的極限不存在。例如函數(shù):f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠0

  2、多元函數(shù)的連續(xù)性定義設(shè)函數(shù)f(x,y)在開區(qū)域(或閉區(qū)域)D內(nèi)有定義,P0(x0,y0)是D的內(nèi)點(diǎn)或邊界點(diǎn)且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)則稱f(x,y)在點(diǎn)P0(x0,y0)連續(xù)。

  性質(zhì)(最大值和最小值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),在D上一定有最大值和最小值。

  性質(zhì)(介值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),如果在D上取得兩個(gè)不同的函數(shù)值,則它在D上取得介于這兩個(gè)值之間的任何值至少一次。

  3、多元函數(shù)的連續(xù)與可導(dǎo)如果一元函數(shù)在某點(diǎn)具有導(dǎo)數(shù),則它在該點(diǎn)必定連續(xù),但對(duì)于多元函數(shù)來說,即使各偏導(dǎo)數(shù)在某點(diǎn)都存在,也不能保證函數(shù)在該點(diǎn)連續(xù)。這是因?yàn)楦髌珜?dǎo)數(shù)存在只能保證點(diǎn)P沿著平行于坐標(biāo)軸的方向趨于P0時(shí),函數(shù)值f(P)趨于f(P0),但不能保證點(diǎn)P按任何方式趨于P0時(shí),函數(shù)值f(P)都趨于f(P0)。

  4、多元函數(shù)可微的必要條件一元函數(shù)在某點(diǎn)的導(dǎo)數(shù)存在是微分存在的充分必要條件,但多元函數(shù)各偏導(dǎo)數(shù)存在只是全微分存在的必要條件而不是充分條件,即可微=>可偏導(dǎo)。

  5、多元函數(shù)可微的充分條件定理(充分條件)如果函數(shù)z=f(x,y)的偏導(dǎo)數(shù)存在且在點(diǎn)(x,y)連續(xù),則函數(shù)在該點(diǎn)可微分。

  6.多元函數(shù)極值存在的必要、充分條件定理(必要條件)設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)具有偏導(dǎo)數(shù),且在點(diǎn)(x0,y0)處有極值,則它在該點(diǎn)的偏導(dǎo)數(shù)必為零。

  定理(充分條件)設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某鄰域內(nèi)連續(xù)且有一階及二階連續(xù)偏導(dǎo)數(shù),又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,則f(x,y)在點(diǎn)(x0,y0)處是否取得極值的條件如下:(1)AC-B2>0時(shí)具有極值,且當(dāng)A0時(shí)有極小值;(2)AC-B2

  7、多元函數(shù)極值存在的解法(1)解方程組fx(x,y)=0,fy(x,y)=0求的一切實(shí)數(shù)解,即可求得一切駐點(diǎn)。

  (2)對(duì)于每一個(gè)駐點(diǎn)(x0,y0),求出二階偏導(dǎo)數(shù)的值A(chǔ)、B、C.(3)定出AC-B2的符號(hào),按充分條件進(jìn)行判定f(x0,y0)是否是極大值、極小值。

 

  注意:在考慮函數(shù)的極值問題時(shí),除了考慮函數(shù)的駐點(diǎn)外,如果有偏導(dǎo)數(shù)不存在的點(diǎn),那么對(duì)這些點(diǎn)也應(yīng)當(dāng)考慮在內(nèi)。

好成績(jī),從選擇好老師開始

趙宇 考研政治

全國優(yōu)秀高端教育品牌學(xué)府考研精品課研發(fā)團(tuán)隊(duì),旨在為每一位考研學(xué)子提供最有效、最貼近實(shí)戰(zhàn)的考研輔導(dǎo)課程

立即預(yù)約

熱門專題

已有2015名學(xué)員在學(xué)府學(xué)習(xí)

你想學(xué)什么?寫出來

Copyright? 2009-2020 北京學(xué)之府教育科技有限責(zé)任公司 (xuefu.com) All Rights Reserved

陜ICP備18002389號(hào)-10

成人亚洲国产精品久久| 国产日韩精品中文字无码| 日本精品VIDEOSSE×少妇| 国产精品99久久免费观看| 久久精品国产精品亚洲毛片| 亚洲欧美精品午睡沙发| 亚洲av午夜精品一区二区三区 | 东北妇女精品BBWBBW| 久久久精品中文字幕麻豆发布 | 中文字幕精品视频| 亚洲av永久无码精品网址| 精品女同一区二区三区在线| 国产999精品2卡3卡4卡| 亚洲国产福利精品一区二区| 在线观看精品国产福利片87| 9丨精品国产高清自在线看| 精品少妇无码AV无码专区| 欧洲精品一区二区三区| 99久久精品国产免看国产一区| 精品人妻人人做人人爽| 国产精品特黄毛片| 国产精品亚洲片在线| 无码人妻精品一区二区三区99性| 四虎影院国产精品| 婷婷国产成人精品视频| 自拍偷自拍亚洲精品播放| 国产在线精品一区二区不卡麻豆| 亚洲欧洲国产成人精品| 日韩精品亚洲专区在线观看| 亚洲高清专区日韩精品 | 青青青在线观看国产精品| 亚洲国产综合精品中文字幕| 99精品一区二区三区| 国产成人啪精品午夜在线播放| 国产精品无圣光一区二区 | 日韩精品久久久久久久电影| 国产成人高清精品一区二区三区 | 香蕉在线精品一区二区| 久久成人国产精品免费软件| 2022精品天堂在线视频| 精品无码一区二区三区电影|